| Objective and Strategies | Concrete | Pictorial | Abstract (Abstract concepts and representations may not be suitable for the suggested |
| :---: | :---: | :---: | :---: |
| R |  |  | $4+3=7$ |
| Combining two parts to make a whole: partwhole model | Use cubes to add two numbers together as a group or in a bar. |  |  |
| R <br> Addition as 'combining 2 groups' | Pictures \& Objects <br> I buy 3 cakes \& my friend buys 2 cakes. <br> How many did we buy altogether? <br> Might be recorded $3+2=5$ | Symbols <br> 8 people are on the bus. 3 more get on at the next on the bus now? <br> $\odot \odot \odot \odot \odot \odot \odot \odot \odot$ <br> Might be recorded $8+3=11$ | p. How many people are |
| 1 <br> Starting at the bigger number and counting on | eceseceee -mm | $12+5=17$ | $5+12=17$ |


|  | Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. | Start at the larger number on the number line and count on in ones or in one jump to find the answer. | Place the larger number in your head and count on the smaller number to find your answer. |
| :---: | :---: | :---: | :---: |
| 1 <br> Addition as 'counting on' U+U <br> (bridging 10) TU+U (bridging 20) | Pictorial recording with children using nume $\square$ <br> Make 5 in different ways <br> Record as a number sentence $4+1=5$ | \& words up to 20. Addition as 'countin <br> Using number lines <br> $16+5=21$ <br> 15  |  |
| $1$ <br> Regrouping to make 10 | $6+5=11$ <br> Start with the bigger number and use the smaller number to make 10. | Use pictures or a number line. Regroup or partition the smaller number to make 10. | $7+4=11$ <br> If I am at seven, how many more do I need to make 10? How many more do I add on now? |
| 2 <br> Adding three single digits | $4+7+6=17$ <br> Put 4 and 6 together to make 10. Add on 7 . |  | $\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ <br> Combine the two numbers that make 10 and then add on the remainder. |


|  | Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit. | Add together three groups of objects. Draw a picture to recombine the groups to make 10. |  |
| :---: | :---: | :---: | :---: |
| $2 / 3$ <br> Column methodno regrouping | $24+15=$ <br> Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. | After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. | Calculations $\begin{array}{r} 21+42= \\ 21 \\ +42 \end{array}$ |
| $2 \begin{array}{ll} \\ & \\ & \text { TU+TU }\end{array}$ |  |  | 100 Square Use 100 square to: <br> - add units <br> - add tens <br> - add tens \& units |
| 3 <br> Column methodregrouping | Make both numbers on a place value grid. <br> Add up the units and exchange 10 ones for one 10. | Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding. | Start by partitioning the numbers before moving on to clearly show the exchange below the addition. |




Subtraction

| Objective and Strategies | Concrete | Pictorial | Abstract <br> (Abstract concepts and representations may not be suitable for the suggested year group) |
| :---: | :---: | :---: | :---: |
| R/1 <br> Taking away ones | Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$ | Cross out drawn objects to show what has been taken away. $15-3=$ $\square$ | $\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$ |
| R <br> Subtraction as 'taking away' from a group | Pictures \& Objects <br> I have 5 cakes. I eat 2 of them. How many do $=\Xi=X X$ <br> Might be recorded 5-2 = 3 |  | uits. I ate 5. How many were left? |
| Counting back | Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4$ <br> Use counters and move them away from the group as you take them away counting backwards as you go. | Count back on a number line or number track <br> Start at the bigger number and count back the smaller number showing the jumps on the number line. | Put 13 in your head, count back 4. What number are you at? Use your fingers to help. |





|  |  <br> Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens. <br> Now I can take away eight tens and complete my subtraction <br> Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount. |  | This will lead to an understanding of subtracting any number including decimals. |
| :---: | :---: | :---: | :---: |
| 3 <br> HTU - TU <br> HTU - HTU <br> Decimals: money <br> (£7.85-£3.49) | Number line - counting on $754-186=568$ | Compact method $\begin{array}{r} 145 \\ -\quad 32 \\ \hline 113 \\ \hline \end{array}$ | Compact method - decomposition $\begin{array}{r} 67{ }^{13} 4^{11} \\ -\quad 3 \quad 6 \quad 7 \\ \hline 374 \end{array}$ |


| 4 <br> ThHTU - HTU <br> Decimals up to 2dp $(72.5-45.7)$ | Number line - counting on $72.5-45.7=26.8$ | Decomposition $\begin{array}{r} 12 \begin{array}{r} 13 \\ 5 \end{array}{ }^{1} 2 \\ 5 \\ 5 \\ \hline \end{array}$ | Decomposition - decimals $\begin{array}{r} 67{ }^{112} 2.15 \\ -4 \quad 5.7 \\ \hline 2 \quad 6.8 \\ \hline 2 \quad 6 \quad 8 \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: |
| 5 Consolidate \& extend including: Decimals to 3 dp | Recognise when one written method is more efficient <br> - There was 2.5 litres in the jug. Sam drank 385 ml . How much was left? <br> - $\quad 18.07 \mathrm{~km}-3.247$ m |  |  |

Multiplication

| Objective and Strategies | Concrete | Pictorial | Abstract <br> (Abstract concepts and representations may not be suitable for the suggested year group) |
| :---: | :---: | :---: | :---: |
| R/1 Doubling | Use practical activities to show how to double a number. | Draw pictures to show how to double a number. <br> Double 4 is 8 $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ $\square$ | Partition a number and then double each part before recombining it back together. |
| R <br> Count repeated groups of the same size (1s/2s/5s/10s) | Pictures / Objects 3 plates, 2 cakes on each plate | Symbols <br> 6 cakes shared betwe |  |
| R/1 <br> Counting in multiples | Count in multiples supported by concrete objects in equal groups. | Use a number line or pictures to continue support in counting in multiples. | Count in multiples of a number aloud. <br> Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$ |






## Division

| Objective and Strategies | Concrete | Pictorial | Abstract (Abstract concepts and representations may not be suitable for |
| :---: | :---: | :---: | :---: |
| R/1 <br> Sharing objects into groups | I have 10 cubes, can you share them equally in 2 groups? | Children use pictures or shapes to share quantities. $8 \div 2=4$ | Share 9 buns between three people. $9 \div 3=3$ |
| R/1 <br> Division as grouping | Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $\qquad$ $96 \div 3=32$ | Use a number line to show jumps in groups. The number of jumps equals the number of groups. <br> Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. | $28 \div 7=4$ <br> Divide 28 into 7 groups. How many are in each group? |


| R <br> Share objects into equal groups \& count how many in each group | Pictures / Objects <br> 6 cakes shared between 2 people <br> 6 cakes put into groups of 2 |  | Symbols <br> 6 cakes shared between 2 <br> 6 cakes put into groups of 2 |
| :---: | :---: | :---: | :---: |
| 1 <br> Solve practical problems that involve sharing into equal groups | Pictures \& Symbols <br> How many sweets will each child have if I sh children? | 12 sweets between 3 Number Lines |  |
| $1$ <br> Division within arrays | Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$ | Draw an array and use lines to split the array into groups to make multiplication and division sentences. | Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$ |
| $1 / 2$ <br> Division with a remainder | $14 \div 3=$ <br> Divide objects between groups and see how much is left over | Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. <br> Draw dots and group them to divide an amount and clearly show a remainder. <br> remainder 2 | Complete written divisions and show the remainder using r . |



|  | three groups. We can put 1 ten in each group and we have 1 ten left over. <br> We exchange this ten for ten ones and then share the ones equally among the groups. <br> We look how much in 1 group so the answer is 14 . |  |  | Finally move into decimal places to divide the total accurately. |
| :---: | :---: | :---: | :---: | :---: |
| 3 <br> Record, support \& explain $\begin{gathered} \mathrm{TU} \div \mathrm{U} \\ \text { (e.g. } 98 \div 6 \text { ) } \end{gathered}$ | Number lines (start from zero)$91 \div 7=13$ |  |  | Grouping (vertical layout) $\begin{aligned} 99 \div 8= & 12 r 3 \\ -\quad 99 & \\ -\quad 80 & (10 \times 8) \\ -\quad 19 & (2 \times 8) \end{aligned}$ |
| 4 <br> Refine and use efficient methods: $\text { HTU } \div U$ | $\begin{aligned} & \text { Grouping (expanded) } \\ & \begin{array}{cl} 6 \overline{196} & \\ -\begin{array}{r} \frac{60}{136} \\ \\ -\quad \frac{60}{76} \end{array} & (10 \times 6) \\ -\frac{60}{16} & (10 \times 6) \\ -\quad \frac{12}{4} & (2 \times 6) \\ & \text { Answer } 32 \mathrm{r} 4 \\ \hline \end{array} \\ & \end{aligned}$ | Grouping (efficient) $344 \div 8=43$ $\begin{array}{r} 8) 344 \\ -\quad 320 \\ -\quad 24 \\ -\quad 24 \\ \hline 0 \end{array}$ | $\begin{aligned} & (40 \times 8) \\ & (3 \times 8) \end{aligned}$ | 'Short' division $291 \div 3=97$ $\text { 3) } \frac{97}{29^{2} 1}$ |
| ```5/6 Use efficient methods: Integer \div U (e.g. 123\div7) Decimal \div U (e.g. 27.6 \div 8) HTU \divTU``` | 'Short' division - decimals$43.4 \div 7=6.2$$7 \longdiv { 4 3 \cdot 1 4 }$ |  |  | 'Long' division |

